US009164768B2

a2 United States Patent

Smith et al.

US 9,164,768 B2
Oct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54) EXECUTING AN INSTRUCTION SET USING (56) References Cited
A PREFIX TO INTERPRET AN OPERATOR
FIELD AS EITHER A FIRST OR A SECOND U.S. PATENT DOCUMENTS
OPERATOR FIELD 3,657,705 A * 4/1972 Mekotaetal. 712/208
5,303,358 A * 4/1994 Baum 712/226
(75) Inventors: Peter Smith, Cambridgeshire (GB); 5,845,102 A * 12/1998 Miller et al. - 7127211
David Richard Hargreaves, Cambridge 6,185,670 B1* 22001 Huffetal. ..o, 712/208
(GB) 6,651,160 B1 11/2003 Hays
6,970,998 B1 11/2005 Favor
2003/0236965 Al* 12/2003 Sheaffer ..o 712/209
(73) Assignee: Cambridge Silicon Radio Limited, 2004/0078552 Al* 4/2004 Chauvel etal. . . 712209
Cambridge (GB) 2004/0186981 Al* 9/2004 Christieetal. 712/210
2005/0188179 Al* 82005 Henryetal. 712/210
2009/0089564 Al* 4/2009 Brickell etal. . . T12/239
(*) Notice: Subject to any disclaimer, the term of this 2009/0210658 Al* 82009 Arakawa 712/41
patent is extended or adjusted under 35 2009/0240926 Al: 9/2009 Ttou e 7121221
U.S.C. 154(b) by 798 days. 2013/0246765 Al 9/2013 Arakawaccceceene 712/226
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/333,939
Jp 2000-284962 A 10/2000
(22) Filed: Dec. 21,2011 OTHER PUBLICATIONS
UK Search Report dated Apr. 5, 2012, in corresponding EP applica-
(65) Prior Publication Data tion.
US 2012/0331274 Al Dec. 27, 2012 % .
cited by examiner
(30) Foreign Application Priority Data Primary Examiner — Geroge Giroux
57 ABSTRACT
Dec. 24,2010 (GB) .oceeevvvevineceiieenene 1021990.5 A method of executing an instruction set having a first instruc-
tion and a second instruction, includes: reading the first
(51) Int.ClL instruction; determining whether the first instruction is inte-
GOG6F 15/00 (2006.01) gral with the second instruction; reading the second instruc-
GOG6F 9/30 (2006.01) tion; when the first instruction is integral with the second
GOG6F 9/10 (2006.01) instruction, interpreting a first operator field of the second
(52) U.S.CL instruction to represent a first operator; and when the first
CPC ... GOGF 9/30185 (2013.01); GOGF 9/3016 instruction is not integral with the second instruction, inter-
(2013.01) preting the first operator field of the second instruction to
(58) Field of Classification Search represent a second operator, wherein the first operator is

USPC ittt 712/209
See application file for complete search history.

read first insteoction

200

202
first instrochion
& frzﬁ'x of tht
ecend hsbaction T

208

read second

{astucblon

2107 \kerpret bits of

F.\rs: sperater fedd
w second
insbrckion b
represent secoad

‘,ng‘n\tcr

different to the second operator.

8 Claims, 2 Drawing Sheets

204

read second

tnstuchon

20¢

interpret bits of
foest sperater fad
W second
hsbochon te
repres ek fwst

n(;eratef

U.S. Patent Oct. 20, 2015 Sheet 1 of 2 US 9,164,768 B2

»Re}_ﬂ DJ

Gure | o (PRIORART)

F{J

"
=
4
JEE—
=
A

]« (PRIOR ART)

Fs':jwfﬁ-

U.S. Patent

2.00

202

20%
T

210

Oct. 20, 2015

{:‘rﬁt instrochon ™
o pre Fx of the
econd habuchon T

ead secondh

{nstrucbion

N

/q\ntep?meb bits of Aﬂ\
fvg sperater fedd
W seconde
(asbuclon

represeak s ecod

& () el u:.‘-.t(:tr'

F\jmre 2

C read first mstmc’norj

Sheet 2 of 2

US 9,164,768 B2

20%

read secan c\'

fnstruehon

interpret

r(:\vst cpe,rcd:ar Fnela\

hsbuchon to

repres 2k {:\v§t

206

AY

bits of

second

o erator
L ep

US 9,164,768 B2

1
EXECUTING AN INSTRUCTION SET USING
A PREFIX TO INTERPRET AN OPERATOR
FIELD AS EITHER A FIRST OR A SECOND
OPERATOR FIELD

BACKGROUND OF THE INVENTION

This invention relates generally to instruction set comput-
ing. In particular the invention relates to a method of execut-
ing an instruction set, and an execution processor for execut-
ing the instruction set.

Reduced instruction set computing (RISC) processors
typically have a fixed bit-width instruction size. Common
sizes are 16-bits and 32-bits. 32-bits give flexibility in
expressing instructions and operands but at the expense of
typically larger code size than the 16-bit instruction sets.

A problem with the short (16-bit) instruction sets is that
they have a restricted number of bits for expressing operators.
Some processors (for example those operating the reduced
instruction set computer architecture MIPS) make use of
prefixes. A prefix is an instruction which is associated with
another instruction. A prefix contains the same number of bits
as the instruction with which it is associated. For example, the
MIPS architecture uses short instructions each having 16 bits.
Both an MIPS prefix and the MIPS instruction with which it
is associated have 16 bits.

Prefixes have been used to signify that a field in an instruc-
tion is to be interpreted as having the same meaning but in a
different location in the instruction. In a simplified example,
FIG. 1a illustrates an instruction in which field A is in location
1, field B is in location 2, field C is in location 3, and field D
is in location 4 of an instruction. FIG. 15 illustrates a prefix
which precedes the instruction of FIG. 1a and indicates that
the fields in locations 1 and 3 of the instruction are to be
interchanged. FIG. 1c illustrates the interpretation that the
executing processor is left with of the instruction of FIG. 1a as
a result of the prefix of FIG. 156. The operands in locations 1
and 3 have been interchanged. Now field C is in location 1,
field B in location 2, field A in location 3, and field D in
location 4. This example is a simplified illustration. In a real
situation the prefix would be used to carry out other functions
as well as indicating that the operands in locations 1 and 3 of
the instruction are to be interchanged.

The example of FIGS. 14, 16 and 1¢ illustrates a change in
the relative location of operators within the instruction. How-
ever, short 16-bit instructions are limited compared to long
32-bit instructions in that the number of operators available
for use in the short instructions is significantly reduced com-
pared to the number of operators available for use in the long
instructions due to the length of the instructions. The method
illustrated in FIGS. 1a, 15 and 1¢ does not increase the num-
ber of operators available for use in a short instruction.

There is therefore a need for a method of executing a
reduced instruction set which increases the number of opera-
tors available for use in the instruction.

SUMMARY OF THE INVENTION

According to a first aspect, there is provided a method of
executing an instruction set comprising a first instruction and
a second instruction, the method comprising: reading the first
instruction; determining whether the first instruction is inte-
gral with the second instruction; reading the second instruc-
tion; if the first instruction is integral with the second instruc-
tion, interpreting a first operator field of the second
instruction to represent a first operator; and if the first instruc-
tion is not integral with the second instruction, interpreting

20

40

45

55

65

2

the first operator field of the second instruction to represent a
second operator, wherein the first operator is different to the
second operator.

Suitably, the method comprises determining that the first
instruction is integral with the second instruction by identi-
fying an indicator in the first instruction.

Suitably, the indicator in the first instruction is a predeter-
mined sequence of bits.

Optionally, the first operator is an Add/Sub operator, and
the second operator is a Mov/Add operator.

Suitably the method further comprises if the first instruc-
tion is integral with the second instruction, interpreting the
first operator field of the second instruction to require an
additional operand. Suitably, the additional operand is not
specified in the second instruction.

According to a second aspect, there is provided an execu-
tion processor arranged to execute an instruction set compris-
ing a first instruction and a second instruction, the execution
processor comprising: an instruction reader arranged to read
the first instruction and the second instruction; a determina-
tion unit arranged to determine whether the first instruction is
integral with the second instruction; and an interpretation unit
arranged to: if the first instruction is integral with the second
instruction, interpret a first operator field of the second
instruction to represent a first operator; and if the first instruc-
tion is not integral with the second instruction, interpret the
first operator field of the second instruction to represent a
second operator, wherein the first operator is different to the
second operator.

Suitably, the determination unit is arranged to determine
that the first instruction is integral with the second instruction
by identifying an indicator in the first instruction.

Suitably, the indicator in the first instruction is a predeter-
mined sequence of bits.

Optionally, the first operator is an Add/Sub operator, and
the second operator is a Mov/Add operator.

Suitably, the interpretation unit is further arranged to, if the
first instruction is integral with the second instruction, inter-
pret the first operator field of the second instruction to require
an additional operand. Suitably, the additional operand is not
specified in the second instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

The following disclosure will now be described by way of
example with reference to the accompanying drawings. In the
drawings:

FIG. 1a illustrates an instruction;

FIG. 15 illustrates a prefix;

FIG. 1c illustrates the interpretation of the instruction of
FIG. 1a when preceded by the prefix of FIG. 15; and

FIG. 2 is a flow diagram illustrating the method by which a
processor executes an instruction set according to the proto-
col described herein.

DETAILED DESCRIPTION OF THE INVENTION

Known reduced instruction sets use short instructions, gen-
erally having 16 bits. These instructions can be grouped into
three classes:

1) short instructions which are prefixes;

2) short instructions which are not prefixes but which are
associated with one or more short instructions which are
prefixes; and

3) short instructions which are isolated full instructions.

US 9,164,768 B2

3

From hereon instructions which are not prefixes but which
are associated with one or more instructions which are pre-
fixes (group 2 above) will be called main instructions.

Known reduced instruction sets which use prefixes do so to
extend an operand or operator of the main instruction with
which the prefix is associated. The following discussion
describes a reduced instruction set which enables a prefix to
increase the number of operators which can be expressed by
an instruction. By increasing the set of available operators
which can be expressed by an instruction, complex instruc-
tions can be expressed in fewer individual instructions. The
efficiency of the overall instruction set is thereby increased.

Reduced instruction sets typically have 16-bit long instruc-
tions, however it is to be understood that the disclosure
extends to instructions having any number of bits.

The flow diagram of FIG. 2 illustrates a sequence of steps.
It is to be understood that not all the steps in this figure are
necessarily required, and that some of the steps may be per-
formed in a different order to that depicted. For example, the
first instruction may be read by the execution processor prior
to the execution processor reading the second instruction.
Alternatively, the second instruction may be read by the
execution processor prior to the execution processor reading
the first instruction.

FIG. 2 illustrates the method by which a processor executes
some instructions in the instruction set. In this example, the
instruction set comprises a first instruction and a second
instruction. The second instruction is a main instruction. The
first instruction is either (i) a prefix associated with the second
instruction, or (ii) another instruction unrelated to the second
instruction. If the first instruction is a prefix to the second
instruction then the second instruction is interpreted as hav-
ing one meaning. If the first instruction is not a prefix to the
second instruction then the second instruction is interpreted
as having a different meaning. In this latter situation, the first
instruction is unrelated to the second instruction, and is pro-
cessed by the execution processor accordingly.

Referring to FIG. 2, at step 200 the processor reads the first
instruction. At step 202, the processor determines whether the
first instruction is a prefix of a second instruction. If the
answer to this determination is YES, that the first instruction
is a prefix of a second instruction, then the method follows
through to step 204 where the second instruction is read.
Then, at step 206, the processor interprets a first operator field
in the second instruction to represent a first operator. If the
answer to the determination of step 202 is NO, that the first
instruction is not a prefix of a second instruction, then the
method follows through to step 208 where the second instruc-
tion is read. Then, at step 210, the processor interprets the first
operator field of the second instruction to represent a second
operator. The first operator is different to the second operator.
The first instruction is not a prefix of the second instruction.
The first instruction is therefore processed by the execution
processor as usual, i.e. in accordance with known methods.

Suitably, the processor interprets the remainder of the sec-
ond instruction independently of the prefix. In other words,
the processor interprets the remainder of the second instruc-
tion as it would have done had the second instruction not been
accompanied by a prefix.

As discussed above, a prefix is an instruction which is
associated with another instruction. Generally, a prefix is
integral with another instruction. A prefix may be an instruc-
tion which forms a part of another instruction. A prefix may
take one of many forms. For example, a prefix may include
bits which are to be incorporated into the bits of another

10

15

20

25

30

35

40

45

50

55

60

65

4

instruction. A prefix may include bits which are interpreted by
an executing processor as altering the meaning of another
instruction.

Suitably, the processor determines if the first instruction is
aprefix of the second instruction by searching for an identifier
in the first instruction. For example, the prefix may include a
sequence of bits which are identifiable by the processor as
indicating that the instruction is a prefix. In an example
instruction set comprising 16-bit long instructions, the iden-
tifier of a prefix constitutes the first 4 bits of the prefix. These
first 4 bits are 1111. In a different example instruction set the
identifier of a prefix could constitute a different number and/
or different location of bits in the prefix.

EXAMPLE

Consider a first operator field comprising a bit or a bit
sequence in an instruction. In isolation the bit or bit sequence
is interpreted by an example execution processor to represent
a “Mov/Add” operator. The “Mov/Add” operator selects
between the two instructions:

Reg(C=Reg4 (equation 1)

RegC=RegC+Regd (equation 2)

Equation 1 is a Mov operation in which the contents of
register A are shifted to register C. Equation 2 is an Add
operation in which the contents of register A are added to
those of register C and the result stored in register C.

The presence of a prefix associated with the instruction
changes the interpretation held by the execution processor of
the first operator field. Instead of interpreting the bit or bit
sequence as a “Mov/Add” operator, the execution processor
interprets the bit or bit sequence as an “Add/Sub” operator.
The “Add/Sub” operator selects between the two instructions:

Reg(C=RegAd+Regh (equation 3)

Reg(C=RegAd-Regh (equation 4)

Equation 3 is an Add operation in which the contents of
register A are added to those of register B and the result stored
in register C. Equation 4 is a Sub operation in which the
contents of register B are subtracted from the contents of
register A and stored in register C.

In terms of the method described with respect to FIG. 2, in
this example a first instruction is read at step 200. If it is
determined at step 202 that this first instruction is not a prefix
of a second instruction, then the second instruction is read at
step 208. The bit or bit sequence of the first operator field of
the second instruction is interpreted by the execution proces-
sor in its isolated form, i.e. as a “Mov/Add” operator. Alter-
natively, if it is determined at step 202 that the first instruction
is a prefix of the second instruction, then when the second
instruction is read, the bit or bit sequence of the first operator
field is interpreted by the execution processor to be an “Add/
Sub” operator.

The presence of the prefix (first instruction) changes the
execution processor’s interpretation of a bit or bit sequence in
the main instruction (second instruction) representing an
operator.

The presence of a prefix associated with a main instruction
may also introduce a further operand into the main instruc-
tion. Alternatively, the presence of the prefix associated with
a main instruction may introduce a plurality of further oper-
ands into the main instruction. For example, in the described
example above the presence of the prefix changes the mean-
ing of an operator field from meaning a “Mov/Add” operator

US 9,164,768 B2

5

to an “Add/Sub” operator. The “Mov/Add” operator requires
two registers: register A and register C. The “Add/Sub” opera-
tor requires three registers: register A, register B, and register
C. The presence of the prefix has therefore introduced a
further operand, the register B, into the main instruction. This
further operand may be specified in the main instruction.
Alternatively, this further operand may not be specified in the
main instruction.

Suitably, the presence of the prefix associated with the
main instruction is interpreted by the execution processor as
indicating that each of a plurality of operator fields in the main
instruction is to be interpreted as representing a different
operator to the operator that that operator field would be
interpreted as representing in isolation. In this case, suitably
the processor interprets the remainder of the main instruction
as it would have done had the main instruction not been
accompanied by a prefix.

Optionally, the method of FIG. 2 may be extended such that
the interpretation of the bits of a first operator field in the
second instruction is dependent not only on whether the first
instruction is a prefix of the second instruction but also on the
specific bit sequence of all or part of the prefix. For example,
a first bit or sequence of bits in the prefix may be interpreted
by the execution processor to mean that the first operator field
represents one operator, whereas a second bit or sequence of
bits in the prefix may be interpreted by the execution proces-
sor to mean that the first operator field represents another
operatotr.

The specific bit sequence of the prefix may be interpreted
by the execution processor as specifying which operator field
of'the second instruction is to be interpreted as representing a
different operator to the operator it represents in isolation. For
example, a first bit sequence of the prefix may be interpreted
as indicating that a first operator field represents operator X
(rather than the operator Y it represents in isolation); and a
second bit sequence of the prefix may be interpreted as indi-
cating that a second operator field represents operator S
(rather than the operator T it represents in isolation). Opera-
tors X and S may be the same. Operators X and S may be
different. Operators Y and T may be the same. Operators Y
and T may be different.

Optionally, the method of FIG. 2 may be extended such that
the location of a specific bit sequence in the prefix is inter-
preted by the execution processor as specifying which opera-
tor field of the second instruction is to be interpreted as
representing a different operator to the operator it represents
in isolation. For example, a specific bit sequence located in
one position in the prefix may be interpreted as indicating that
a first operator field represents operator X (rather than the
operator Y it represents in isolation); and the specific bit
sequence located in a second position in the prefix may be
interpreted as indicating that a second operator field repre-
sents operator S (rather than the operator T it represents in
isolation). Operators X and S may be the same. Operators X
and S may be different. Operators Y and T may be the same.
Operators Y and T may be different.

This disclosure also relates to an execution processor
which is arranged to execute an instruction set which is
formed according to the protocol described herein. The
execution processor is arranged to perform the method of
FIG. 2. The execution processor comprises an instruction
reader arranged to read instructions, a determination unit
arranged to determine whether one instruction is a prefix of a
main instruction, and an interpretation unit arranged to inter-
pret the operator fields of the main instruction according to a

40

45

65

6

protocol in which at least one operator field represents a
different operator depending on the presence of an associated
prefix.

Preferably, the execution processor is implemented in
hardware. Optionally, the execution processor is imple-
mented in software.

The methods and apparatus described herein operate
according to a protocol in which the bit or bits of an operator
field of an instruction is/are to be interpreted by the executing
processor as having one significance when that instruction is
not accompanied by a prefix and another significance when
that instruction is accompanied by a prefix. In particular, an
operator field is interpreted as representing one operator
when there is no accompanying prefix, and as representing
another operator when there is a prefix. For a given operator
location in a main instruction, the prefix changes the inter-
pretation of the bits at that location from a first interpretation
(which is the interpretation those bits have in isolation) to a
second interpretation.

These methods and apparatus are more efficient than the
prior art discussed because they increase the number of avail-
able operators for use in each instruction. By increasing the
set of available operators which can be expressed by an
instruction, complex instructions can be expressed in fewer
individual instructions. The efficiency of the overall instruc-
tion set is thereby increased.

The applicant draws attention to the fact that the present
invention may include any feature or combination of features
disclosed herein either implicitly or explicitly or any gener-
alisation thereof, without limitation to the scope of any ofthe
present claims. In view of the foregoing description it will be
evident to a person skilled in the art that various modifications
may be made within the scope of the invention.

The invention claimed is:

1. A method of executing an instruction set comprising a
first instruction and a second instruction, the method com-
prising:

reading the first instruction;

determining whether the first instruction is integral with

the second instruction;

reading the second instruction;

when the first instruction is integral with the second

instruction, interpreting a first operator field of the sec-
ond instruction to represent a first operator, wherein the
first operator is an Add/Sub operator, and interpreting
the first operator field of the second instruction to require
an additional operand; and

when the first instruction is not integral with the second

instruction, interpreting the first operator field of the
second instruction to represent a second operator,
wherein the second operator is a Mov/Add operator.

2. A method as claimed in claim 1, comprising determining
that the first instruction is integral with the second instruction
by identifying an indicator in the first instruction.

3. A method as claimed in claim 2, wherein the indicator in
the first instruction is a predetermined sequence of bits.

4. A method as claimed in claim 1, wherein the additional
operand is not specified in the second instruction.

5. An execution processor arranged to execute an instruc-
tion set comprising a first instruction and a second instruction,
the execution processor comprising:

an instruction reader arranged to read the first instruction

and the second instruction;

a determination unit arranged to determine whether the

first instruction is integral with the second instruction;
and

US 9,164,768 B2
7

an interpretation unit arranged to:

when the first instruction is integral with the second
instruction, interpret a first operator field of the sec-
ond instruction to represent a first operator, wherein
the first operator is an Add/Sub operator, and inter- 5
preting the first operator field of the second instruc-
tion to require an additional operand; and

when the first instruction is not integral with the second
instruction, interpret the first operator field of the
second instruction to represent a second operator, 10
wherein the second operator is a Mov/Add operator.

6. An execution processor as claimed in claim 5, wherein
the determination unit is arranged to determine that the first
instruction is integral with the second instruction by identi-
fying an indicator in the first instruction. 15

7. An execution processor as claimed in claim 6, wherein
the indicator in the first instruction is a predetermined
sequence of bits.

8. An execution processor as claimed in claim 5, wherein
the additional operand is not specified in the second instruc- 20
tion.

